Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 40 results
1.

Allosteric regulation of kinase activity in living cells.

blue cyan red Fluorescent proteins LOV domains Phytochromes Review
bioRxiv, 25 Sep 2023 DOI: 10.1101/2023.07.19.549709 Link to full text
Abstract: The dysregulation of protein kinases is associated with multiple diseases due to the kinases’ involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or “sensors” are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
2.

The clinical potential of optogenetic interrogation of pathogenesis.

blue cyan green red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Clin Transl Med, May 2023 DOI: 10.1002/ctm2.1243 Link to full text
Abstract: Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye.
3.

Live Imaging with Genetically Encoded Physiologic Sensors and Optogenetic Tools.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
J Invest Dermatol, Mar 2023 DOI: 10.1016/j.jid.2022.12.002 Link to full text
Abstract: Barrier tissues such as the epidermis employ complex signal transduction systems to execute morphogenetic programs and to rapidly respond to environmental cues to promote homeostasis. Recent advances in live-imaging techniques and tools allow precise spatial and temporal monitoring and manipulation of intracellular signaling cascades. Leveraging the chemistry of naturally occurring light-sensitive proteins, genetically encoded fluorescent biosensors have emerged as robust tools for visualizing dynamic signaling events. In contrast, optogenetic protein constructs permit laser-mediated control of signal receptors and effectors within live cells, organoids, and even model organisms. In this paper, we review the basic principles underlying novel biosensors and optogenetic tools and highlight how recent studies in cutaneous biology have leveraged these imaging strategies to illuminate the spatiotemporal signals regulating epidermal development, barrier formation, and tissue homeostasis.
4.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
5.

Towards translational optogenetics.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Nat Biomed Eng, 13 Jan 2022 DOI: 10.1038/s41551-021-00829-3 Link to full text
Abstract: Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
6.

Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude.

blue cyan CRY2/CIB1 Dronpa145K/N pdDronpa1 TULIP HEK293A U-87 MG Signaling cascade control
bioRxiv, 14 May 2021 DOI: 10.1101/2021.02.05.430013 Link to full text
Abstract: How protein signaling networks respond to different input strengths is an important but poorly understood problem in cell biology. For example, the small GTPase RhoA regulates both focal adhesion (FA) growth or disassembly, but whether RhoA serves as a switch selecting between cellular outcomes, or if outcomes are simply modulated by additional factors in the cell, is not clear. Here, we develop a photoswitchable RhoA guanine exchange factor, psRhoGEF, to precisely control endogenous RhoA activity. We also develop a FRET-based biosensor to allow visualization of RhoA activity together with psRhoGEF control. Using these new optical tools, we discover that low levels of RhoA activation preferentially induce FA disassembly in a Src-dependent manner, while high levels induce both FA growth and disassembly in a ROCK-dependent manner. Thus, rheostatic control of RhoA activation with photoswitchable RhoGEF reveals that cells can use signal amplitude to produce multiple responses to a single biochemical signal.
7.

Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light‐Control in Bacteria.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 9 Feb 2021 DOI: 10.1002/adbi.202000256 Link to full text
Abstract: Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light‐control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
8.

Single-Molecule Analysis and Engineering of DNA Motors.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chem Rev, 29 Oct 2019 DOI: 10.1021/acs.chemrev.9b00361 Link to full text
Abstract: Molecular motors are diverse enzymes that transduce chemical energy into mechanical work and, in doing so, perform critical cellular functions such as DNA replication and transcription, DNA supercoiling, intracellular transport, and ATP synthesis. Single-molecule techniques have been extensively used to identify structural intermediates in the reaction cycles of molecular motors and to understand how substeps in energy consumption drive transitions between the intermediates. Here, we review a broad spectrum of single-molecule tools and techniques such as optical and magnetic tweezers, atomic force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), nanopore tweezers, and hybrid techniques that increase the number of observables. These methods enable the manipulation of individual biomolecules via the application of forces and torques and the observation of dynamic conformational changes in single motor complexes. We also review how these techniques have been applied to study various motors such as helicases, DNA and RNA polymerases, topoisomerases, nucleosome remodelers, and motors involved in the condensation, segregation, and digestion of DNA. In-depth analysis of mechanochemical coupling in molecular motors has made the development of artificially engineered motors possible. We review techniques such as mutagenesis, chemical modifications, and optogenetics that have been used to re-engineer existing molecular motors to have, for instance, altered speed, processivity, or functionality. We also discuss how single-molecule analysis of engineered motors allows us to challenge our fundamental understanding of how molecular motors transduce energy.
9.

Optogenetics sheds new light on tissue engineering and regenerative medicine.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biomaterials, 16 Oct 2019 DOI: 10.1016/j.biomaterials.2019.119546 Link to full text
Abstract: Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
10.

Light-induced dimerization approaches to control cellular processes.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chemistry, 15 Jul 2019 DOI: 10.1002/chem.201900562 Link to full text
Abstract: Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.
11.

A yeast system for discovering optogenetic inhibitors of eukaryotic translation initiation.

blue cyan AsLOV2 Dronpa145K/N PYP RsLOV S. cerevisiae
ACS Synth Biol, 22 Mar 2019 DOI: 10.1021/acssynbio.8b00386 Link to full text
Abstract: The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis non-invasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-depednednt translation initiation in a mechanistically defined manner.
12.

Optically inducible membrane recruitment and signaling systems.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Struct Biol, 15 Mar 2019 DOI: 10.1016/j.sbi.2019.01.017 Link to full text
Abstract: Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
13.

Controlling protein conformation with light.

blue cyan Dronpa145KN Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 5 Mar 2019 DOI: 10.1016/j.sbi.2019.01.012 Link to full text
Abstract: Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
14.

Photodimerization systems for regulating protein-protein interactions with light.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 25 Feb 2019 DOI: 10.1016/j.sbi.2019.01.021 Link to full text
Abstract: Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
15.

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.

blue cyan red Cryptochromes FKF1/G1 Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 14 Dec 2018 DOI: 10.3390/ijms19124052 Link to full text
Abstract: Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
16.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
17.

Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Cold Spring Harb Perspect Med, 5 Oct 2018 DOI: 10.1101/cshperspect.a034371 Link to full text
Abstract: Gene- and cell-based therapies are well recognized as central pillars of next-generation medicine, but controllability remains a critical issue for clinical applications. In this context, optogenetics is opening up exciting new opportunities for precision-guided medicine by using illumination with light of appropriate intensity and wavelength as a trigger signal to achieve pinpoint spatiotemporal control of cellular activities, such as transgene expression. In this review, we highlight recent advances in optogenetics, focusing on devices for biomedical applications. We introduce the construction and applications of optogenetic-based biomedical tools to treat neurological diseases, diabetes, heart diseases, and cancer, as well as bioelectronic implants that combine light-interfaced electronic devices and optogenetic systems into portable personalized precision bioelectronic medical tools. Optogenetics-based technology promises the capability to achieve traceless, remotely controlled precision dosing of an enormous range of therapeutic outputs. Finally, we discuss the prospects for optogenetic medicine, as well as some emerging challenges.
18.

Optogenetic Tools for Subcellular Applications in Neuroscience.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Neuron, 1 Nov 2017 DOI: 10.1016/j.neuron.2017.09.047 Link to full text
Abstract: The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
19.

Applications of optobiology in intact cells and multi-cellular organisms.

blue cyan green near-infrared red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Mol Biol, 4 Sep 2017 DOI: 10.1016/j.jmb.2017.08.015 Link to full text
Abstract: Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
20.

Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Theranostics, 18 Aug 2017 DOI: 10.7150/thno.20593 Link to full text
Abstract: Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
21.

Synthetic biological approaches to optogenetically control cell signaling.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Biotechnol, 14 Jul 2017 DOI: 10.1016/j.copbio.2017.06.010 Link to full text
Abstract: Precise spatial and temporal control of cellular processes is in life sciences a highly sought-after capability. In the recent years, this goal has become progressively achievable through the field of optogenetics, which utilizes light as a non-invasive means to control genetically encoded light-responsive proteins. The latest optogenetic systems, such as those for control of subcellular localization or cellular decision-making and tissue morphogenesis provide us with insights to gain a deeper understanding of the cellular inner workings. Besides, they hold a potential for further development into biomedical applications, from in vitro optogenetics-assisted drug candidate screenings to light-controlled gene therapy and tissue engineering.
22.

The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
F1000Res, 11 Apr 2017 DOI: 10.12688/f1000research.10617.1 Link to full text
Abstract: The zebrafish ( Danio rerio) is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.
23.

Optical control of cell signaling by single-chain photoswitchable kinases.

cyan Dronpa145K/N Dronpa145N pdDronpa1 C. elegans in vivo HEK293 HEK293T in vitro NIH/3T3 Signaling cascade control Control of vesicular transport
Science, 24 Feb 2017 DOI: 10.1126/science.aah3605 Link to full text
Abstract: Protein kinases transduce signals to regulate a wide array of cellular functions in eukaryotes. A generalizable method for optical control of kinases would enable fine spatiotemporal interrogation or manipulation of these various functions. We report the design and application of single-chain cofactor-free kinases with photoswitchable activity. We engineered a dimeric protein, pdDronpa, that dissociates in cyan light and reassociates in violet light. Attaching two pdDronpa domains at rationally selected locations in the kinase domain, we created the photoswitchable kinases psRaf1, psMEK1, psMEK2, and psCDK5. Using these photoswitchable kinases, we established an all-optical cell-based assay for screening inhibitors, uncovered a direct and rapid inhibitory feedback loop from ERK to MEK1, and mediated developmental changes and synaptic vesicle transport in vivo using light.
24.

Optogenetics - Bringing light into the darkness of mammalian signal transduction.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biochim Biophys Acta, 11 Nov 2016 DOI: 10.1016/j.bbamcr.2016.11.009 Link to full text
Abstract: Cells receive many different environmental clues to which they must adapt accordingly. Therefore, a complex signal transduction network has evolved. Cellular signal transduction is a highly dynamic process, in which the specific outcome is a result of the exact spatial and temporal resolution of single sub-events. While conventional techniques, like chemical inducer systems, have led to a sound understanding of the architecture of signal transduction pathways, the spatiotemporal aspects were often impossible to resolve. Optogenetics, based on genetically encoded light-responsive proteins, has the potential to revolutionize manipulation of signal transduction processes. Light can be easily applied with highest precision and minimal invasiveness. This review focuses on examples of optogenetic systems which were generated and applied to manipulate non-neuronal mammalian signaling processes at various stages of signal transduction, from cell membrane through cytoplasm to nucleus. Further, the future of optogenetic signaling will be discussed.
25.

The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins.

blue cyan Fluorescent proteins LOV domains Review
Trends Biochem Sci, 1 Nov 2016 DOI: 10.1016/j.tibs.2016.09.010 Link to full text
Abstract: Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.
Submit a new publication to our database